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Generic wraparound aerodynamic shape optimization technology is presented and applied to a modern

commercial aircraft wing in transonic cruise. The wing geometry is parameterized by a novel domain-element

method, which uses efficient global interpolation functions to deform both the surface geometry and corresponding

computational fluid dynamics volume mesh. The technique also provides a method that allows geometries to be

parameterized at various levels, ranging fromglobal three-dimensional planformalterations to detailed local surface

changes. Combining all levels of parameterization allows for free-formdesign control with very fewdesign variables.

The method provides an efficient combined shape parameterization and high-quality mesh deformation technique

that is totally independent of mesh type (structured or unstructured). Optimization independence from the flow

solver is achieved by obtaining sensitivity information for an advanced gradient-based optimizer by finite

differences. The entire optimization suite has also been parallelized to allow optimization with highly flexible

parameterization in practical times. Results are presented for highly constrained optimizations of the modern

aircraft wing in transonic cruise, using three levels of parameterization (number of design variables) to assess the

effect of parameterization level on the optimization. The highest-level optimization results in a totally-shock-free

geometry with an associated substantial reduction in drag.

I. Introduction

IMPROVED aerodynamic or fluid dynamic efficiency is sought
constantly in many areas and in all aerospace industries, parti-

cularly with increasing fuel costs. Computational fluid dynamics
(CFD) is at the forefront of analysis capabilities and provides a fast
and effective method of predicting aerodynamic performance, and
these methods are now commonplace in aerospace industries and are
being used increasingly in design. However, with increasing com-
plexity of geometries, designers can often struggle to interpret the
simulation results sufficiently to be able to manually alter the geo-
metry to improve performance. Hence, there has been an increase in
demand for intelligent and automatic shape optimization schemes.
Combining geometry controlmethodswith a numerical optimization
algorithm provides a mechanism to mathematically seek improved
and optimum designs using CFD as the analysis tool.

Central to any aerodynamic shape optimization method is the
geometry parameterization (i.e., a method of representing the design
surface that defines the degrees of freedom inwhich the geometry can
be altered). This must then be linked with an effective method of
deforming the CFD surface and volume mesh in a corresponding
fashion. However, parameterizing complex shapes is a problem that
remains a serious obstacle to both manual and automatic CFD-based
optimization. Awide variety of shape control andmorphingmethods
have been developed [1–11], but these often do not allow sufficiently
free-form design, can produce infeasible shapes, and do not allow the
possibility of manual manipulation of the geometry [12,13]. Further-
more, most methods do not have a suitable method to deform the
CFD mesh once the surface has been changed, and regeneration is
often required. Thismay not be a problem for simple geometries and/
or small meshes, but can make automation of the optimization

process impossible in some cases. Thosemethods that do incorporate
CFD-mesh deformation techniques are often of poor quality, hence
restricting the size of the allowable deformation, and/or are compu-
tationally expensive and impractical for large CFD meshes. It is
essential that designs can be deformed into arbitrary shapes, but an
excessive number of deformation degrees of freedom (design
variables) can often make optimization impractically expensive.

An efficient domain-element shape parameterization method has
been developed by the authors, along with a high-quality and robust
mesh deformation scheme, and presented recently for two-
dimensional CFD-based shape optimization [14,15]. The parameter-
ization technique, surface-mesh motion, and volume-mesh motion
are all accomplished simultaneously through global interpolations
using radial basis functions, such that when the positions of the
domain element are altered, both the design surface and its corres-
ponding CFD volume mesh are deformed in a high-quality fashion,
and this allows automating the entire process. This interpolation has
been developed such that the domain-element parameterization
method has no computational memory overhead that may restrict the
size of the CFD volume mesh that can be used. The domain-element
parameterization technique also allows for geometry control at
various scales, ranging from gross three-dimensional planform
alterations to fine, detailed surface-geometry changes. Furthermore,
it is totally independent of the CFD-mesh type, removing any grid
generation or flow solver dependence.

To ensure that a totally wraparound tool could be developed
(i.e., also independent of the flow solver), the sensitivities requi-
red for optimization are computed here via finite difference. This
allows numerous options in terms of optimization approaches, and
an advanced feasible sequential programming (FSQP) [16–18]
gradient-based optimizer has been integrated into the framework.
Significantly, this approach allows the application of numerous strict
constraints to an optimization. This domain-element parameter-
ization, global interpolation-based CFD-meshmotion, and advanced
optimization approach have been proven in two dimensions,
demonstrating drag reductions of up to 45% for highly constrained
airfoil cases [14,15].

The research presented in this paper is the three-dimensional
extension, including parallelization, of the wraparound shape
parameterization and optimization method. The software suite has
been parallelized to allow optimization of three-dimensional bodies
in practical times. Optimization is applied here to the multi-
disciplinary optimization (MDO) wing (a large modern transport
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aircraft wing, the result of a previous Brite-Euram project [19,20]) in
the economical transonic cruise condition. This geometry is not
optimized for aerodynamic performance, and so it offers significant
scope for aerodynamic improvements; of particular interest here is
the effect of varying the optimization scheme in regard to the number
(level) of design parameters included. Optimizations at three
parameterization levels are performed, ranging from pure planform
alterations to detailed surface-geometry changes, and the flexibility
and effectiveness of the approach is analyzed in detail. In all cases,
the objective is drag minimization.

It should be noted that although in-house CFD grid generation and
flow solution codes are used here, the method is completely generic
and can be wrapped around any appropriate tools. Furthermore,
although an external aerodynamic design problem is presented, this
is not a restriction, and themethods can be applied to any steady-state
fluid dynamic design problem.

II. Domain-Element Parameterization

The shape parameterization method developed is critical to both
the success and the computational cost of an optimization. The
method must allow sufficient free-form design such that any likely
optimum design that may exist is achievable, and inverse design
methods are usually applied to gauge the range of design space
achievable by any method. To keep computational costs to a mini-
mum, it is essential to both use an efficient optimization strategy and
to have as few design variables as possible, especially if sensitivity
information is to be evaluated by finite difference.

Parameterization methods used for CFD shape optimization either
parameterize the design geometry fromwhich a mesh is generated or
they parameterize the aerodynamic mesh itself. Geometry para-
meterization methods uniquely define a surface geometry by the
values of the design variables. These methods are inherently linked
with the grid generation package, and optimization of a design
requires automatic grid generation tools. Examples of this method
include partial differential equation methods [1,8], polynomial or
spline [9] and shape-function/class-function transformation [10,11]
methods. Methods that parameterize the grid are generally indepe-
ndent of the grid generation package, but a mesh deformation
algorithm is required. Grid generation is still a major and time-
consuming challenge in industry, and these types of methods allow
the use of previously generated grids for optimization, which is a
significant advantage. Parameterization methods of this nature
include discrete [21–23], analytical, basis vector [4], free-form
deformation algorithms [5], and domain-element methods.§ A
comprehensive review of available parameterization methods is
presented by Samareh [24,25].

The novel parameterization method developed and applied in this
research links the entire aerodynamic volume mesh to a domain
element that controls the shape of the design. At the center of this
parameterization technique is a multivariate interpolation using
radial basis functions, and this provides a unique mapping between
the domain element, the surface geometry, and the locations of grid
points in the volumemesh. All points are treated as point clouds, and
so the parameterization technique is totally independent from the
grid type and generation package. Themapping is only required once
for the initial design, as the values of the parametric coordinates of
the grid points with respect to the domain element remain constant
throughout the optimization. Updates to the geometry and the
corresponding mesh are provided simultaneously by application of
the multivariate interpolation, and this results in very-high-quality
mesh deformation [26,27].

Figure 1 depicts the domain-element parameterization of the
MDO wing. The method here is an extension of that presented by
Morris et al. [15] for a two-dimensional airfoil, such that the three-
dimensional element consists of an evenly distributed series of two-
dimensional slices located according to local surface geometry.

Design variables are not chosen to be the individual location of
each domain-element point. Instead, a hierarchy of intuitive shape
deformation design variables has been developed to reduce the
number of variables. Three levels of design variables have been
established. At the highest level, design variables correspond to
motions of all domain-element nodes simultaneously. For example,
for an airfoil section, the parameters may be chord, camber, and
thickness. For awing, a single design variablemay be defined to alter
the positions of all the two-dimensional domain-element slices
relative to each other, resulting in changing sweep or dihedral
distributions. At the intermediate level, design variables may control
the twist, chord, and thickness of each two-dimensional domain-
element slice separately. At the lowest level, very small groups or
individual domain-element nodes are altered to provide detailed and
local shape changes.

A simple example is presented to demonstrate the approach. A
cylindrical surface is taken as the design surface, and six square slices
are used as the domain element to control this surface (see Fig. 2a).
Figure 2b shows a local parameter (i.e., movement of a single
domain-element point). Figures 2c and 2d show two global para-
meters: a sweep (in fact, this is actually a shear) parameter and a
linear twist parameter. Figure 2e shows these two global parameters
combined, and Fig. 2f shows these two global parameters and the
local parameter combined. This shows both the flexibility of the
parameterization scheme and the effectiveness of the surface defor-
mation scheme; the volume mesh would be deformed by the same
motion, and a mesh deformation example is demonstrated later for
the real mesh.

Note that, as shown in Fig. 2, the parameterization is fully three-
dimensional, such that deformations due to a movement of the
domain element in the plane of a two-dimensional slice smoothly
extend in the spanwise direction as well, and so no linear inter-
polation is required between slices. An example deformation of the
CFD volume mesh to a change in a design variable is depicted in
Fig. 3 (in this case, the eighth domain-element slice is perturbed in
the local twist design variable). It is observed that the interpolation
method provides a smooth but local deformation to the wing in all
three dimensions. Selected planes of the volume mesh are shown,
and the interpolation method is seen to provide a smooth and
very-high-quality mesh deformation, with grid motion contained
within the radial basis function (RBF) support radius (discussed
subsequently).

The results of three optimizations of theMDOare presented in this
paper. Each optimization adopts identical domain elements,
optimization algorithm, and constraints in the same cruise condition,
however:

Optimization 1 corresponds to a low-cost optimization, with only
30 active design variables of the highest level. These control only
truly-three-dimensional deformations of the wing planform.

Optimization 2 corresponds to an intermediate optimization with
104 active design variables. In addition to the three-dimensional
design variables in optimization 1, each two-dimensional domain-
element slice can deform.

Optimization 3 corresponds to the highest flexibility optimization.
Each two-dimensional domain-element slice has a full set of 22
active design variables developed for free-form airfoil design

Fig. 1 MDO wing surface and parameterization.

§Data available online at http://www.optimalsolutions.us/ [retrieved
10 June 2008].
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[14,15]. These are also combined with the some of design variables
from optimizations 1 and 2 to create a total of 388 active design
variables. (More details of the parameters will be given in a later
section.)

The most flexible optimization here still has considerably fewer
design variables than would be required by many other shape
parameterization techniques to provide free-form surface design for
such a geometry. A further advantage of the domain-element method
is the truly-three-dimensional design-deformation degrees of free-
dom that cannot be easily replicated by many other parameterization
techniques. The parameterization technique developed has several
key advantages:

1) The number of design variables required to allow free-form
design can be very low, when compared with other methods [15].

2) Design variables can range in scale from the coordinate of a
single domain-element location, providing a detailed surface-
geometry change, to a gross three-dimensional deformation such as
sweep distribution. This can allow designers to choose the fidelity of
the parameterization.

3) Global parameters (for example, angle of attack or wing sweep)
can be included as design variables. This is impossible in many other
optimization approaches, in which these quantities have to be
adjusted externally to attempt to satisfy constraints.

4) The parameterization technique is independent of the initial
geometry. This can allow very complex or multi-element geometries
to be parameterized.

5) The parameterization method has a low number of control
points (in this case, the number of domain-element points), and this

Fig. 2 Cylinder parameterization example.

Fig. 3 MDO mesh with RBF deformation.
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allows incorporating a high-quality interpolation to deform the
surface and mesh directly. This would be impractical if all the
surface-mesh points were control points, for example.

6) Updates to the surface geometry and the required volume mesh
are independent of the grid generation package. Grid generation is
still a major and time-consuming challenge in industry, and the
domain-element method allows the use of previously generated grids
for optimization. Both structured and unstructured grids are equally
applicable.

7) The interpolation dependence only needs to be computed once,
before any simulation. Updates to the geometry and the corres-
ponding volume mesh are then provided simultaneously by matrix-
vector multiplication; this is extremely fast and efficient and results
in high-quality mesh deformation.

8) There is no requirement for surface smoothness. For example,
geometries that possess geometric excrescences or gaps can still be
optimizedwith this technique. Because a smooth global interpolation
method is used, if the initial surface is discontinuous, deformed
geometries will still be discontinuous. If necessary, constraints can
be placed around those excrescences (for example, extra control
points can be placed there with zero deformation set), and so features
remain within defined geometric parameters. This is an advantage
and a novel aspect of this parameterization method.

III. Parameterization and Mesh Motion Formulation

A multivariate interpolation method using RBFs has been
developed to provide a method of two- and three-dimensional
geometry parameterization. The global dependence between the
domain-element nodes and the aerodynamic mesh points is
evaluated and translates a deformation of the element due to a design-
variable change to smoothly alter the aerodynamic shape and its
corresponding CFD volume mesh. Using the domain-element
method, only an initial mesh of the original design is required to
allow optimization. The interpolation method developed here also
requires no connectivity information and can therefore be applied
equally well to either structured- or unstructured-grid topologies.
Domain-element points and volume-mesh points are simply treated
as independent point clouds, with the dependence matrix computed
only once. If desired, the surface deformation and volume defor-
mations may be split. In this case, polynomial terms would be
included in the surface deformation, but not in the volume defor-
mation, which would best be done in terms of displacements, not
positions [27].

The general theory of RBFs is presented by Buhmann [28] and
Wendland [29], and the method used here is detailed by Allen and
Rendall [26] and Rendall and Allen [27].

The solution of an interpolation problem using RBFs begins with
the form of the required interpolation:

s�r� �
Xi�N
i�1

�i��kr � rik� � p�r� (1)

where s�r� is the function approximated, the index i identifies the
centers for the RBFs (the domain-element nodes in this case), and ri
is the location of that center. For p�r�, a linear polynomial is used so
that translation and rotation are recovered exactly. The coefficients
�i are found by requiring exact recovery of the original function.

Initially, a system needs to solved relating to the domain-element
nodes, to evaluate the coefficients associated with them. Exact
recovery of the centers gives (including linear polynomial terms)

X DE �Cax (2)

Y DE �Cay (3)

Z DE �Caz (4)
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(analogous definitions hold forYDE andZDE and their a vectors) and
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with

�DE1DE2
� ��krDE1

� rDE2
k� (7)

indicating the basis function evaluated on the distance between DE1

and DE2 (basis function defined later). Subscript DE represents a
domain-element control point, andN is the number of control points.
To locate the aerodynamic-mesh-point positions resulting from the
domain-element positions, the following matrix must be formed, in
which subscript a indicates an aerodynamicmesh point, andM is the
number of mesh points:

A �
1 xa1 ya1 za1 �a1DE1

�a1DE2
� � � �a1DEN

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

1 xaM yaM zaM �aMDE1
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� � � �aMDEN

0
B@

1
CA

(8)

The positions of the aerodynamic mesh points, given by the vectors
Xa, Ya, and Za, are then computed by

X a �Aax �AC�1XDE �HXDE (9)

Y a �Aay �AC�1YDE �HYDE (10)

Z a �Aaz �AC�1ZDE �HZDE (11)

There are several methods to implement this approach: for
example, computingH directly by inverting C, inverting C, storing
C�1 and multiplying through by A when required, or evaluating a
and multiplying through by A when required, but these are not
considered here. Features of this interpolation worth noting are as
follows:

1) The interpolation is independent of mesh type or structure, as
the position vectors are simply grid positions in any order.

2) The interpolation is unique. This implies that no additional
constraints need be applied.

3) The interpolation in all three coordinate directions is
independent.

4) The interpolation is time-invariant and only needs to be
computed once, before any simulation. The surface geometry
and mesh are then deformed very efficiently by matrix-vector
multiplication.

5) The interpolation is perfectly parallel, as the matrix and the
position vectors can simply be split into required rows and elements.

Domain-element methods work well with this approach to mesh
deformation, due to the low number of domain-element node points.
However, if one were to use spline control points or surface-mesh
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points in three dimensions, then computational memory issues must
be considered [30].

Because of the decaying behavior of the compact basis functions
used here [27], the interpolation has a local character, and domain-
element nodes located nearer the surface points have a greater
influence. This would also be true for the other functions, including
thin-plate spline functions; however, their global nature produces
changes at the far field in the volume mesh as well. Therefore,
domain-element nodes are located nearer and more clustered to the
wing surface near the leading edge; this allows for finer control of the
leading edge. This is in comparisonwith nodes over themain body of
thewing,where smooth gross changes are generallymore applicable.
The exact basis function used and the support radius can be varied to
provide smoother or more global changes to both the surface
geometry and the volume mesh [27].

Of course, the function ��krk� used is important. Any decaying
function can be used, but the compact functions ofWendland [29] are
used. The C2 function of Wendland was found to provide the best
combination of deformation quality and matrix conditioning, and
this is defined as

��krk� � �1 � krk�4�4krk � 1� krk < 1:0

��krk� � 0 krk � 1:0 (12)

where krk is the Euclidean norm. In the preceding, krk is actually
krk=SR, where SR is the support radius (i.e., the region of influence).
Outside of this region, there will be no grid deformation.

IV. Optimization Method

Constrained gradient-based optimizers used to minimize an
objective function are fast and efficient at providing solutions to local
optimization problems [18,31]. When considering practical and
relevant optimization of aerodynamic performance of a solid
body (airfoil/wing/rotor blade), there are usually constraints that
need to be imposed (minimum thickness, minimum volume, mini-
mum lift, maximummoment, etc.). Unconstrained optimizations can
incorporate constraints by using a penalty function for designs that
are near or beyond the constraint boundary, but these methods are
now considered to be inefficient and have been replaced by methods
that focus on the solution of the Kuhn–Tucker equations.

The aim of an optimization process is to obtain the values of a set
of design variables, �� ��1; �2; . . . ; �n�T , that in some way can be
defined as optimal. An objective function determined by the numeric
values of the design variables J��� is to be minimized and can be
subject to equality constraints, inequality constraints, and/or
parameter bounds.

A general constrained-problem description is stated as

Minimize J��� (13)

Subject to equality constraints Gi��� � 0 (where i� 1; . . . ; me),
inequality constraints Gi��� � 0 (where i�me � 1; . . . ; m), and
parameter bounds �l � � � �u, where the vector functionG��� is a
vector of length m containing the values of the equality and
inequality constraints evaluated at �.

The Kuhn–Tucker equations are necessary conditions for
optimality for a constrained optimization problem and can be stated
as [in addition to the original constraints of Eq. (13)]:

rJ��	� �
Xm
i�1

�	i :rGi��	� � 0 (14)

�	i � Gi��	� � 0 i� 1; . . . ; m (15)

�	i � 0 i�me � 1; . . . ; m (16)

where �	 refers to the optimum values of �.
The solution of these equations forms the basis of the nonlinear

programming algorithm. The constrained quasi-Newton method
guarantees superlinear convergence by accumulating second-order

information relating to the Kuhn–Tucker equations using a quasi-
Newton updating procedure; that is, at each major iteration, an
approximation is made of the Hessian of the Lagrangian function.
This is then used to generate a quadratic programming subproblem
in which the solution is used to form a search direction for a line-
search procedure. This forms the basis of the sequential quadratic
programming (SQP) algorithm.

SQP methods represent the forefront of nonlinear programming
techniques. Schittkowski [32] implemented and tested an SQP
algorithm that, on average, outperformed other tested methods in
terms of efficiency, accuracy, and percentage of successful solutions
on a set of test problems. The FSQP algorithm used in the current
research was originally developed in [16–18]. The feasibility aspect
of the optimizer relates to a generated design satisfying all con-
straints; that is, if an initial design does not satisfy the specified
constraints, the optimizer first achieves a satisfactory design, and
then all subsequent iterates generated also satisfy all constraints
simultaneously. This particular algorithm has been implemented
across a wide range of optimization problems: most relevant and
notable is the work of [33–36], in which the algorithm is used for
CFD constrained optimization of a blended wing/body using an
inviscid adjoint solver to obtain the sensitivities.

The development of generic optimization tools encompassing a
wide range of applicability has been the principle aim of the current
research. This has ultimately required the use of a finite difference
technique for evaluating gradients to enable independence from the
flow solver; the sensitivity for each design variable is easily obtained
by the relative change in the value of steady-state objective function,
due to a geometric perturbation. The cost of evaluating all the sensi-
tivities with this method is approximately linear with the number of
design variables. Hence, computation can prove to be expensive for a
large number of design variables; however, significant speedup can
be achieved by parallelization (in a data sense, rather than domain
decomposition sense). To ensure no biasing toward one direction and
to increase accuracy, a second-order central-difference finite
difference stencil is used.

It is worth considering this approach further. It could be argued
that gradient-based methods may not be ideal for the case in which
the initial design is alreadywell designed, particularly if this lies at or
near a local minimum. In this case, something more global may be
suitable. Reference [37] presented an interesting study related to this,
comparing both optimizationmethods andflow solvers. Specifically,
three optimization tools [SYN107 (gradient-based search technique
using the continuous adjoint equation), MDOPT (a response-surface
method), and OPTIMAS (a floating-point genetic algorithm)] were
applied to the Navier–Stokes drag minimization of the DPW-W1
wing across a range of flight conditions. All three optimizers pro-
duced similar designs and when cross-checked by a different CFD
flow solver yielded similar drag reductions and also reasonable
offdesign performance.

For a case in which a more global approach is required, the
optimization scheme used here could be used in a different mode. In
the results here, it is applied such that every new evolution has to be
an improvement on the previous. However, it can be run without this
restriction, which allows a more global search space to be explored.
Furthermore, it should be remembered that application of strict
constraints can be extremely difficult with the alternative approaches
mentioned previously.

V. Parallel Aspects

The entire optimization suite has been parallelized. The
optimization algorithm comprises modules for objective and
constraint function evaluations, gradient of objective and constraint
function modules, and an SQP numerical optimizer for updates.
Function evaluations and optimizer updates are performed on the
master node; however, for gradient evaluation using a finite
difference methodology, multiple independent steady-state flow
calculations are required to evaluate the sensitivities. This gradient
evaluation module has been parallelized to allow parallel evaluation
of the required sensitivities, such that each CPU can control the
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geometry (and CFD volume mesh) corresponding to a different
design variable and call to the flow solver. Flowfield results are then
returned to the master node for optimizer updates. This gradient
evaluation module remains independent of the flow solver, and so
either a serial or parallel version of the flow solver itself may be
called. This approach scales almost linearlywith processors, butwith
a small scalar overhead due to the line-searchmethod, whichmust be
sequential, and is carried out on the master node. The parallelization

of the algorithm is key to enable optimization of three-dimensional
bodies using a finite difference technique for gradient evaluation.

IV. Three-Dimensional Aerodynamic Optimization

The MDO wing corresponds to a typical traditional design of a
large modern transport aircraft wing, with its primary design point
being that of transonic cruise-flight efficiency. However, it should be

Table 1 Optimization results overview

Level Parameters Evolutions Drag reduction, % CFD solutions Time (CPUs)

Optimization 1 Low 30 15 8.13 930 1.0 (31)
Optimization 2 Medium 103 26 14.23 5410 4.3 (28)
Optimization 3 High 388 30 18.29 23,340 7.0 (66)

Table 2 Wing optimization results

Initial Optimization 1 % difference Optimization 2 % diff Optimization 3 % difference

Cl 0.4523 0.4525 �0:04 0.4541 �0:40 0.4530 �0:14
Cmbending 0.1340 0.1338 �0:14 0.1153 �13:95 0.1004 �25:03
Cmtorsion �0:0547 �0:0547 0.00 �0:0547 �0:18 �0:0471 �13:93
Volume 387.14 393.75 �1:71 399.430 �3:10 401.60 �3:73
Cd 0.02780 0.02554 �8:13 0.02401 �14:23 0.02287 �18:29
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Fig. 4 Optimization history.
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stated here that this case offers significant scope for aerodynamic
improvements, as the baseline case is by no means optimized with
regard to aerodynamic performance. With this design point in mind,
the objective of optimization isminimumdrag; however, thismust be
achieved without detriment to other aerodynamic, structural, and
geometric quantities. As such, four constraints are imposed on each
optimization:

1) The total lift is greater than or equal to the total lift of the initial
wing. This is an essential constraint. Crucially, the constraint
involves total lift and not lift coefficient; this ensures that the
optimization is independent of the aircraft reference area, whichmay
alter with changing geometry.

2) The internal volume is greater than or equal to the internal
volume of the initial wing. It has been demonstrated in previous
works [15] that reductions in drag can be achieved by allowing inter-
nal volume to decrease, and so these designs do not truly represent
design improvements.

3) The root bending moment is less than or equal to the root
bending moment of the initial wing. Major structural members of the
wing are sized according to these loads and, as such, any increased
moment will impact negatively on wing structural weight.

4) The root torsion moment is less than or equal to the root torsion
moment of the initial wing, imposed for the same reasons given in the
preceding constraint.

The preceding constraints ensure that the results of any optimiza-
tion representpractical solutionsand that any improvements achieved
can be attributed solely to improvements in geometric design. Root
moments are taken about the quarter-chord position of the root
section. However, of course, the final result will depend on the
constraints applied. For example, it may bemore realistic to constrain
the structural span rather than the aerodynamic span, but the results
presented are suitable for demonstration of the method capability.

The economical cruise-flight Mach number for the MDO wing
defined by Allwright [19] and Haase et al. [20] is 0.85, with the wing
trimmed to obtain a lift coefficient of 0.452. This design case is well
suited to inviscid flow analysis by solution of the Euler equations,
because induced and wave drag form a major part of the total drag.
Furthermore, two-dimensional airfoil optimizations have shown
previously that the improvements achieved through inviscid opti-
mizations in transonic Mach numbers are also realized in viscous
analysis [14,15]. The grid used in each optimization is a 330,000-
point structured-multiblock mesh using the generation techniques of
Allen [38]. Flow solutions are provided by an inviscid structured-
multiblock finite volume upwind solver [39–42] using van Leer’s
flux vector splitting [43,44] and implementing multigrid conver-
gence acceleration [45].

The results of three independent optimizations are presented.
Each optimization of the MDO wing represents a different level of

Fig. 5 Domain-element and wing geometries, initial and optimized.
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parameterization, with a correspondingly increased number of
active design variables. Optimization cost is directly linked with
the number of active design variables for two reasons: first,
gradient information is required for each design variable, and
second, an optimization with an increased number of design
variables frequently requires more evolutions to obtain an optimum
solution.

The optimizations were run with the following design parameters:
In optimization 1, only three issues are considered: twist, anhedral/

dihedral, and sweep. There are 15 domain-element slices, and the
root section is fixed in position; hence, there are 14 sweep design
variables and 14 anhedral variables. A linear twist is added as a single
parameter, and wing angle of attack is the final parameter, giving 30
parameters.

In optimization 2, each of the 15 domain-element slices now have
five local design variables: angle of attack, chord, thickness, and
�x; z� locations of the center of rotation. These are added to 28 of the
variables from optimization 1; twist and angle of attack are is not
required. Hence, there are 103 parameters.

In optimization 3, each of the 15 domain-element slices now have
the full set of 22 active design variables developed for free-form
airfoil design [14,15]. These are then combined with some of the
design variables from optimizations 1 and 2.Only the �x; z� locations
of the center of rotation are required for each slice, and angle of attack

and twist are not required from the 30 parameters. This gives a total of
388 active design variables.

It should be stated here that the possible combinations of
parameters defined are huge, and only representative parameters are
used here. However, as has been shown in [15], a large proportion of
the design space is available using these parameters in combination
with the FSQP algorithm. The important issue here is the effect the
parameter scales have on the optimization results. It should also be
noted that the sweep parameter is not strictly a sweep, but a shear.
However, it was decided to fix the wing semispan rather than the
structural span.

A summary of the results is given in Table 1, with detailed results
of the three optimizations given in Table 2.Optimization 1 achieves a
drag reduction of over 8%, which is impressive, considering the
extent to which the optimization is constrained and that only plan-
form changes are allowed. As the level of the optimization increases,
activating more design variables, which enables more detailed and
subtle changes to the wing geometry, further improvements are
achieved. Optimization 3 is of the highest level and corresponds to
active design variables that enable fully free-form control over airfoil
profile geometry combined with design variables that enable truly-
three-dimensional planform alterations. This optimization achieves
a reduction in drag coefficient of 18%, and this is a significant
reduction.

Fig. 6 Spanwise distributions.

1654 MORRIS, ALLEN, AND RENDALL



Table 1 also shows the approximate number of flow solutions
required, the relative runtime required, and the number of CPUs used
for each case. The number of flow solutions is approximate, because
the number required at the serial part of the code, computing the step
size at each evolution, is not constant. Each processor can control its
own parametric perturbation and corresponding mesh deformation
and can spawn its own flow solver call. Hence, up to 2 
 N variables
processors can be used (plus one required for the master process),
using a serial call to theflow solver (the case here), as the positive and
negative perturbations of each variable can be run on separate
processors. The runtime speedup scales almost linearly with the
number of processors, because there are no interprocessor commu-
nications required during the flow solutions. However, each flow
solution may also be parallel (assuming that sufficient processors are
available), and this would reduce the runtime further. Hence, this
parallel approach has enabled high-level CFD shape optimization,
even using a finite difference technique with serial calls to a flow
solver, possible within practical runtimes.

Observation of the evolution histories in Figs. 4a–4c shows that
optimizations could be halted even after only a few evolutions and
significant improvements would still have been obtained. The 388-
variable case could be stopped after only 15 evolutions, and a 16%
drag reduction would still have been achieved. With only 30 design
variables, optimization 1 finds its optimum quickly, requiring only
15 evolutions in total. This is a very interesting result, because an 8%
reduction in drag has been achieved with only global changes (i.e.,
sections can move but not change profile). With only these select
design variables, the optimization is constantly very close to three of
the four constraint boundaries. When more design variables are
activated (i.e., local surface changes are included), optimizations
require more evolutions to reach optimal designs, but due to the
additional degrees of freedom that the design can now deform in,
optimizations start exploring the design space, surprisingly away
frommany of the constraint boundaries. The lift constraint is the only
boundary for which all three optimizations find an optimum very
close to the minimum-allowable value. Optimization has had the

Fig. 7 Cp distributions.
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beneficial effect of reducing root bending and root torsion moments,
sometimes significantly. Wing internal volume has also increased
slightly in all cases.

Initial and optimized domain-element and wing geometries are
depicted in Figs. 5a–5c for optimizations 1, 2, and 3, respectively.
The most notable changes to the optimized wings are to the sweep
distribution; not only has sweep been increased in all cases to a
similar extent, but the leading edges are no longer straight. This is
surprising; root torsion moment is rigidly constrained and an
increased sweep angle normally impacts negatively on this. Obser-
vation of Figs. 6 demonstrate that loading has moved significantly
inboard, such that sweep angle can be increased in an effort to reduce
drag with no penalty to root moments. Although cruise flight is not
usually the determining case for structural wing-box design, reduced
root aerodynamic moments could provide possible weight savings.
Figures 6 also show that drag has increased slightly inboard due to its
increased loading here, but with the exception of optimization 2, in
which there is a small rise in drag around the 33% span region, the
drag is significantly reduced at all outboard locations. It should be
remembered here that even with the large amount of surface
deformation shown in Figs. 5, the volume meshes are still computed
as a deformation of the initial mesh and no mesh regeneration is
required.

Figure 7 depicts contours of coefficient of pressure Cp for the
initialMDOandoptimizedwings, andFig. 8 depicts the sectionalCp
distributions for the wings, transformed onto a rectangular wing of
unit chord and original span length to enable comparison.

The MDO wing in cruise flight exhibits a strong shock along the
entire length of the span. Optimization 1 has altered the pressure
distribution significantly with now two clear shock patterns. The
shock originating in the inboard sections is of similar strength and
location to that of the original MDO; however, it starts to weaken
significantly with span location. The second shock structure at the tip
is comparatively nearer the leading edge than the originalMDOwing
and is slightly stronger.Without active design variables that can alter
the airfoil profile geometry significantly, it was never anticipated that
shock strength could be reduced significantly, but the reduction in
drag by over 8% is considered to be substantial. Optimization 2, with
active design variables controlling the three-dimensional planform
(and, to a limited degree, airfoil profile changes), achieves over 14%
reduction in drag. The main shock wave has been removed, but a
small shock near the leading edge at outboard locations has been
developed. Optimization 3, with planform and complete airfoil free-
form control, achieves over 18% reduction in drag and results in a
completely shock-free wing. This is a considerable result, consi-
dering the constraint on a high value of lift and at a high transonic

Fig. 8 Surface Cp distributions.
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Mach number. From Fig. 8d, it is clear that the wing from
optimization 3 has truly achieved an improvement in geometric
design: a smoothCp distribution that is completely shock-free along
the entire span of the wing is obtained.

Sectional slices through the transformedwings are shown in Fig. 9
and compared with the initial MDO wing geometry. As anticipated,
as the wing corresponding to optimization 1 is unable to change
airfoil profile geometries, only a slight increase in wing angle of
attack and twist are observed, in addition to the sweep change.
However, significant airfoil section changes (and twist distribution)
are clearly seen for optimizations 2 and 3. Root incidence is
increased, but with a larger washout, highlighting that inboard
sections are more highly loaded with relief toward the tip.

VII. Conclusions

A completely generic wraparound aerodynamic optimization tool
has been developed and applied here to three-dimensional wing
optimization. This comprises a new geometric parameterization
technique for application to CFD-based aerodynamic optimization.
The parameterization uses radial basis functions to interpolate
positions of the domain element and the grid coordinates to provide
simultaneous deformation of the design surface and its corres-
ponding aerodynamic mesh. The interpolation and updates to the
geometry and its associated CFD mesh are of extreme high quality,
robust, fast, and efficient. This domain-element technique is
independent of mesh topology and mesh generation package,
requiring only an initial mesh.

Finite difference sensitivities are computed from the design
parameter perturbations and fed into a feasible sequential quadratic

programming gradient-based optimizer. Significantly, this approach
allows application of multiple strict constraints. This optimization
framework has been parallelized, such that each CPU can perform its
own parametric perturbation and corresponding mesh deformation
and can spawn its own flow solver calls, allowing optimization of
three-dimensional bodies to be performed in practical runtimes. The
entire optimization suite has been parallelized in a generic fashion
such that the process is still independent of the flow solver, and
using a serial flow solver, the speedup scales almost linearly with
the number of CPUs. However, a parallel flow solution may also be
used for each perturbation, and this would result in even faster
computation.

The parameterization technique allows combination of variables
of different scales and types with only a few parameterization nodes,
and this leads to a significantly reduced number of design variables
for three-dimensional applications when compared with many other
types of shape parameterization method. The use of truly-three-
dimensional planform design variables is novel and has led to
significant planform adjustments in an effort to reduce drag. The
effects of this allowed variable parameterization scale have been
investigated here. Three aerodynamic optimizations of the MDO
wing in transonic cruise have been presented, corresponding to
different levels of active design variables ranging from 30 planform
parameters to 388 global and local parameters. Of course, fewer than
30 parameters could have been used, but thiswould reduce the design
space available, and it has been proven here that the space available
increases with the number of parameters adopted. Alternative
constraints could also have been applied, for example, constraining
structural span rather than semispan. However, the important issue is
demonstration of the parameterization approach and the effect of

Fig. 9 Airfoil profiles.
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varying the number of parameters included. The lowest level adopted
here still results in an 8% drag reduction, whereas the highest-level
optimization results in a totally-shock-free wing with over 18%
reduction in inviscid drag, combined with significantly reduced root
aerodynamic moments.

Acknowledgments

The authors would like to thank AgustaWestland, Engineering
and Physical Sciences Council (EPSRC), and the United Kingdom’s
Ministry of Defence Joint Grant Scheme funding under contract GR/
S61294 for the partial funding of this research and the support of Asa
Morris, and the University of Bristol, where Thomas Rendall was
funded by a postgraduate research scholarship.

References

[1] Bloor, M. I. G., and Wilson, M. J., “Efficient Parameterization of
Generic Aircraft Geometry,” Journal of Aircraft, Vol. 32, No. 6, 1995,
pp. 1269–1275.
doi:10.2514/3.46874

[2] Young, D. P., Huffman, W. P., Melvin, R. G., Bieterman, M. B.,
Hilmes, C. L., and Johnson, F. T., “Inexactness and Global Conver-
gence in Design Optimization,” 5th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Panama
City, FL, A/AA Paper 94-4286, Sept. 1994.

[3] Sobieczky, H., “Parametric Airfoils and Wings,” Notes on Numerical

Fluid Mechanics, Vol. 68, 1998, pp. 71–88.
[4] Pickett, R. M., Rubinstein, M. F., and Nelson, R. B., “Automated

Structural Synthesis Using a Reduced Number of Design Coordinates,”
AIAA Journal, Vol. 11, No. 4, 1973, pp. 489–494.
doi:10.2514/3.50489

[5] Watt, A., and Watt, M., Advanced Animation and Rendering

Techniques, Addison-Wesley, New York, 1992, Chap. 17.
[6] Hicks, R. M., and Henne, P. A., “Wing Design by Numerical Optimi-

zation,” Journal of Aircraft, Vol. 15, No. 7, 1978, pp. 407–412.
doi:10.2514/3.58379

[7] Hicks, R. M., Murman, E. M., and Vanderplaats, G. N., “An
Assessment of Aerofoil Design by Numerical Optimization,” NASA
Ames Research Center TMX-3092, Moffett Field, CA, July 1974.

[8] Smith, R. E., Bloor, M. I .G., Wilson, M. J., and Thomas, A. T., “Rapid
Airplane Parametric Input Design (RAPID)” 12th AIAAComputational

Fluid Dynamics Conference, AIAA,Washington, D.C., 1995, pp. 452–
462.

[9] Braibant, V., and Fleury, C., “Shape Optimal Design using B-Splines,”
Computer Methods in Applied Mechanics and Engineering, Vol. 44,
No. 3, Aug. 1984, pp. 247–267.
doi:10.1016/0045-7825(84)90132-4

[10] Kulfan, B. M., and Bussoletti, J. E., “Fundamental Parametric
Geometry Representations for Aircraft Component Shapes,” 11th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Confer-
ence, AIAA Paper 2006-6948, Sept. 2006.

[11] Kulfan, B. M., “A Universal Parametric Geometry Representation
Method—CST,” 45th AIAAAerospace Sciences Meeting and Exhibit,
Reno, NV, AIAA Paper 2007-62, Jan. 2007.

[12] Castonguay, P., and Nadarajah, S. K., “Effect of Shape Parameter-
ization on Aerodynamic Shape Optimization,” 45th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 2007-59,
Jan. 2007.

[13] Nadarajah, S., Castonguay, P., and Mousavi, A., “Survey of Shape
Parameterization Techniques and its Effect on Three-Dimensional
Aerodynamic Shape Optimization,” 18th AIAA Computational Fluid
Dynamics Conference, Miami, AIAA Paper 2007-3837, June 2007.

[14] Morris, A. M., Allen, C. B., Rendall T. C. S., “Development of Generic
CFD-Based Aerodynamic Optimization Tools for Helicopter Rotor
Blades,” 25th AIAA Applied Aerodynamics Conference, Miami,
AIAA Paper 2007-3809, June 2007.

[15] Morris, A. M., Allen, C. B., Rendall, T. C. S., “CFD-based
Optimization of Aerofoils using Radial Basis Functions for Domain
Element Parameterization and Mesh Deformation,” International

Journal for Numerical Methods in Fluids, Vol. 58, No. 8, 2008,
pp. 827–860.
doi:10.1002/fld.1769

[16] Zhou, J. L., Tits, A. L., and Lawrence, C. T., “User’s Guide for FFSQP
Version 3.7: A FORTRAN Code for Solving Optimization Programs,
Possibly Minimax, with General Inequality Constraints and Linear
Equality Constraints, Generating Feasible Iterates,” Inst. for Systems

Research, Univ. of Maryland, SRC-TR-92-107r5, College Park, MD,
1997.

[17] Zhou, J. L., and Tits, A. L., “Nonotone Line Search for Minimax
Problems,” Journal of Optimization Theory and Applications, Vol. 76,
No. 3, 1993, pp. 455–476.
doi:10.1007/BF00939377

[18] Panier, E., and Tits, A. L., “On Combining Feasibility, Descent and
Superlinear Convergence in Inequality Constrained Optimization,”
Mathematical Programming, Vol. 59, 1993, 261–276.

[19] Allwright, S., “Multi-Discipline Optimization in Preliminary Design of
Commercial Transport Aircraft,” Computational Methods in Applied

Sciences (ECCOMAS), Wiley, New York, Sept, 1996, pp. 523–526.
[20] Haase, D., Selmin, V., and Winzell, B., “Notes on Numerical Fluid

Mechanics and Multidisciplinary Design,” Progress in Computational
Flow-Structure Interaction, Vol. 81, Springer, New York, 2002.

[21] Reuther, J., “Aerodynamic Shape Optimization Using Control
Theory,” NASA, CR-201064, 1996.

[22] Jameson, A., “Aerodynamic Design via Control Theory,” Journal of

Scientific Computing, Vol. 3, 1988, pp. 233–260.
doi:10.1007/BF01061285

[23] Jameson, A., “Automatic Design of Transonic Aerofoils to Reduce the
Shock Induced Pressure Drag,” Proceedings of the 31st Israel Annual
Conference on Aviation and Aeronautics, Feb. 1990, pp. 5–17.

[24] Samareh, J. A., “Status and future of geometry Modeling and Grid
Generation for Design and Optimization,” Journal of Aircraft, Vol. 36,
No. 1, 1999, pp. 97–104.
doi:10.2514/2.2417

[25] Samareh, J.A., “Survey of Shape parameterization techniques forHigh-
Fidelity Multidisciplinary Shape Optimization,” AIAA Journal,
Vol. 39, No. 5, May 2001, pp. 877–884.
doi:10.2514/2.1391

[26] Allen, C. B., and Rendall, T. C. S., “Unified CFD-CSD Interpolation
and Mesh Motion Using Radial Basis Functions,” 25th AIAA Applied
Aerodynamics Conference, Miami, AIAA Paper 2007-3804,
June 2007.

[27] Rendall, T. C. S., and Allen, C. B., “Unified Fluid-Structure Inter-
polation and Mesh Motion Using Radial Basis Functions,” Inter-

national Journal for Numerical Methods in Engineering, Vol. 74,
No. 10, 2008, pp. 1519–1559.
doi:10.1002/nme.2219

[28] Buhmann, H., Radial Basis Functions, 1st ed., Cambridge Univ. Press,
New York, 2005.

[29] Wendland, H., Scattered Data Approximation, 1st ed., Cambridge
Univ. Press, New York, 2005.

[30] Rendall, T. C. S., and Allen, C. B., “Efficient Mesh Motion Using
Radial Basis Functions with Data Reduction Algorithms,” Proceedings
46thAIAAAerospaceSciencesMeeting,Reno,NV,AIAAPaper 2008-
305, Jan. 2008.

[31] Vanderplaats, G. N., Numerical Optimization Techniques for

Engineering Design: with Applications, McGraw–Hill, New York,
1984.

[32] Schittkowski, K., “Test Examples for Nonlinear Programming Codes,”
Inst. for Information Technology, Univ. of Stuttgart, Stuttgart,
Germany, 1984.

[33] Wong, W. S., Le Moigne, A., and Qin, N., “Parallel Adjoint-Based
Optimization of a Blended Wing Body Aircraft with Shock Control
Bumps,” The Aeronautical Journal, Vol. 111, No. 1117, Mar. 2007,
pp. 165–174.

[34] Qin, N., Vavalle, A., and Le Moigne, A., “Spanwise Lift Distribution
for Blended Wing Body Aircraft,” Journal of Aircraft, Vol. 42, No. 2,
2005, pp. 356–365.
doi:10.2514/1.4229

[35] Wong, W. S., Qin, N., Sellars, N., Holden. H., and Babinsky, H., “A
Combined Experimental and Numerical Study of Flow Structures over
Three-Dimensional Shock Control Bumps,” Aerospace Science and

Technology, Vol. 12, No. 6, 2008, pp. 436–447.
doi:10.1016/j.ast.2007.10.011

[36] Qin, N., Vavalle, A., Le Moigne, A., Laban, M., Huckett, K., and
Weinerfelt, P., “Aerodynamic Studies of Blended Wing Body
Aircraft,” 9th AIAA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization Conference, AIAA Paper 2002-5448,
Sept. 2002.

[37] Epstein, B., Jameson, A., Peigin, S., Roman, D., Harrison, N., and
Vassberg, J., “Comparative Study of 3D Wing Drag Minimization by
Different Optimization Techniques,” 46th AIAA Aerospace Sciences
Meeting, Reno, NV, AIAA Paper 2008-326, 2008.

[38] Allen, C. B., “Towards Automatic Structured Multiblock Mesh
Generation Using Improved Transfinite Interpolation,” International

Journal for Numerical Methods in Engineering, Vol. 74, No. 5, 2008,

1658 MORRIS, ALLEN, AND RENDALL

http://dx.doi.org/10.2514/3.46874
http://dx.doi.org/10.2514/3.50489
http://dx.doi.org/10.2514/3.58379
http://dx.doi.org/10.1016/0045-7825(84)90132-4
http://dx.doi.org/10.1002/fld.1769
http://dx.doi.org/10.1007/BF00939377
http://dx.doi.org/10.1007/BF01061285
http://dx.doi.org/10.2514/2.2417
http://dx.doi.org/10.2514/2.1391
http://dx.doi.org/10.1002/nme.2219
http://dx.doi.org/10.2514/1.4229
http://dx.doi.org/10.1016/j.ast.2007.10.011


pp. 697–733.
doi:10.1002/nme.2170

[39] Allen, C. B., “Parallel Simulation of UnsteadyHoveringRotorWakes,”
International Journal for Numerical Methods in Engineering, Vol. 68,
No. 6, 2006, pp. 632–649.
doi:10.1002/nme.1723

[40] Allen, C. B., “Convergence of Steady and Unsteady Formulations for
Inviscid Hovering Rotor Solutions,” International Journal for

Numerical Methods in Fluids, Vol. 41, No. 9, 2003, pp. 931–949.
doi:10.1002/fld.474

[41] Allen, C. B., “An Unsteady Multiblock Multigrid Scheme for Lifting
Forward FlightRotor Simulation,” International Journal forNumerical
Methods in Fluids, Vol. 45, No. 9, 2004, pp. 973–984.
doi:10.1002/fld.711

[42] Allen, C. B., “Parallel Universal Approach to Mesh Motion and
Application to Rotors in Forward Flight,” International Journal for

Numerical Methods in Engineering, Vol. 69, No. 10, 2007, pp. 2126–
2149.
doi:10.1002/nme.1846

[43] van Leer, B., “Flux Vector Splitting for the Euler Equations,” Lecture
Notes in Physics, Vol. 170, 1982, pp. 507–512.

[44] Parpia, I. H., “Van-Leer Flux Vector Splitting inMoving Coordinates,”
AIAA Journal, Vol. 26, No. 1, 1988, pp. 113–115.
doi:10.2514/3.9858

[45] Allen, C. B., “Multigrid Convergence of Inviscid Fixed- and Rotary-
Wing Flows,” International Journal for Numerical Methods in Fluids,
Vol. 39, No. 2, 2002, pp. 121–140.
doi:10.1002/fld.282

E. Livne
Associate Editor

MORRIS, ALLEN, AND RENDALL 1659

http://dx.doi.org/10.1002/nme.2170
http://dx.doi.org/10.1002/nme.1723
http://dx.doi.org/10.1002/fld.474
http://dx.doi.org/10.1002/fld.711
http://dx.doi.org/10.1002/nme.1846
http://dx.doi.org/10.2514/3.9858
http://dx.doi.org/10.1002/fld.282

